- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chuyang (3)
-
Loutzenhiser, Peter G. (3)
-
Ranjan, Devesh (3)
-
Zhang, Zhuomin M. (3)
-
Yang, Chiyu (2)
-
Pan, Kevin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, Chuyang; Yang, Chiyu; Ranjan, Devesh; Loutzenhiser, Peter G.; Zhang, Zhuomin M. (, Journal of thermophysics and heat transfer)The focus of this work is on the measurement and analysis of the radiative properties of polycrystalline SiO2 particle beds with various layer thicknesses. The particles are polydispersed with average diameters of 222, 150, and 40 μm. The spectral, directional–hemispherical reflectance and transmittance of the particle bed are measured at wavelengths from 0.4 to 1.8 μmusing a monochromator, and the reflectance measurement is extended to 15 μmusing a Fourier-transform infrared spectrometer. Particles are closely packed between two transparent windows for measuring the radiative properties. In the visible and near-infrared region up to 1.8 μm, the inverse adding–doubling method yields the effective absorption and scattering coefficients. The results suggest that short wavelength absorption needs to be included in modeling the behavior of particle beds due to multiple scattering. A discrete-scale Monte Carlo ray-tracing method is developed to model the radiative properties by assuming monodispersed spherical particles, and the simulated results compare well with measurements. The effective absorption and scattering coefficients of the particle beds obtained from the independent scattering theory are compared to those from the inverse method. The impact of dependent scattering on the packed beds is observed for smaller-sized particles.more » « less
-
Chen, Chuyang; Yang, Chiyu; Pan, Kevin; Ranjan, Devesh; Loutzenhiser, Peter G.; Zhang, Zhuomin M. (, Experimental heat transfer)Bauxite and silica particles are candidate materials for solar thermal energy storage at high temperatures. The temperature-dependent emittance of packed beds with bauxite and silica particles was measured using a newly upgraded emissometer at wavelengths 2 μm ≤ λ ≤ 16 μm and temperatures up to ~730 K. The room-temperature emittance was obtained from the measured directional-hemispherical reflectance. A fused silica disc was used to test the emissometer by comparing the measured spectral emittance with the calculated emittance from a fitted Lorentz oscillator model. For the polycrystalline silica particles and the fused silica disc, the measured emittance increases with temperature in the mid-infrared region. The underlying mechanism is interpreted as the temperature-dependent damping coefficient in the Lorentz oscillator model. Two types of bauxite particles with different compositions and sizes were investigated. For λ > 10 μm, the measured emittance at elevated temperatures is higher than that at room temperature. In the region 2 μm < λ < 6 μm, the temperature dependence varies for different types of particles. The total emittance of bauxite particle beds was calculated by spectral integration using Planck’s distribution at the prescribed temperature. The calculated total emittance is between 0.89 and 0.96, but it does not change monotonically with temperature.more » « less
An official website of the United States government
